Учёные разработали новую модель, которая позволяет лучше понять механизм работы двойного электрического слоя (EDL) в суперконденсаторах и предсказывать их способность накапливать заряд. Эта модель согласуется с экспериментальными данными и поможет усовершенствовать суперконденсаторы, которые играют ключевую роль в портативной электронике и электромобилях.
Если батарею можно представить как ёмкость, которая медленно накапливает энергию, то суперконденсатор — это сосуд, который можно быстро наполнить и мгновенно разрядить. Суперконденсаторы работают с очень высокими токами, что делает их особенно полезными в ситуациях, требующих мгновенной и мощной отдачи энергии.
Новая модель, разработанная исследователями из МИЭМ НИУ ВШЭ и Научно-исследовательского центра химической физики им. Н.Н. Семёнова, углубляет наше понимание двойного электрического слоя на границе между электродом и раствором электролита. Модель уточняет классическое модифицированное уравнение Пуассона-Больцмана, учитывая сложные взаимодействия между ионами и молекулами воды, влияние электрических полей на структуру воды, а также пространственные ограничения движения ионов на поверхности электрода. Эти усовершенствования позволяют точнее описывать, как EDL сохраняет заряд в различных условиях, с особым акцентом на дифференциальную ёмкость — способность EDL сохранять заряд при небольших изменениях напряжения.
Используя водные растворы перхлората натрия и гексафторфосфата калия с серебряным электродом, исследователи подтвердили, что предсказания их модели полностью соответствуют экспериментальным данным. Модель может применяться не только к простым, но и к сложным электролитным системам, демонстрируя универсальность при работе с различными типами электролитов.
Этот прорыв откроет путь к разработке более эффективных суперконденсаторов, которые будут иметь решающее значение для повышения производительности современных технологий, таких как электромобили и портативная электроника, за счёт оптимизации способов накопления и высвобождения энергии. Исследование также создаст основу для разработки более сложных моделей, учитывающих ещё более сильные взаимодействия ионов с электродами, что актуально для реальных устройств.
Читать материалы по теме:
В России учёные улучшили сцепление в электродах для суперконденсаторов электромобилей
Импортозаместят Meyer Burger и Linton Kayex: в России появится станок для производства микросхем
В Москве создали новый тип материалов для современной электроники
Сейчас на главной
География поставок вооружений постепенно увеличивается
Калужский «Тайфун» выиграл процесс против Зеленодольского завода имени А. Г. Горького
Новая защита не повреждает корпус лёгкой бронетехники и не создаёт вторичных поражающих факторов
Пользователи уже получили 10 млн уведомлений от МФЦ
А также было отражено 3,5 миллиона фишинговых атак
Кумулятивная струя разбивается о металл до того, как коснётся брони
Специалисты использовали лазерное сканирование и фотограмметрию для точного воспроизведения
Подготовку к запуску обсерватории планируется завершить к 2030 году
Технология моделирования улучшает безопасность и скорость движения
Замкнутый цикл абразива повысит рентабельность литья
Новая разработка поможет сократить отходы и превратить пластик в полезные изделия
Для Индии проект боевого истребителя имеет стратегическое значение